Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
  1. Weltenzyklopädie
  2. فهرست انتگرال تابع‌های وارون هذلولوی - ویکی‌پدیا، دانشنامهٔ آزاد
فهرست انتگرال تابع‌های وارون هذلولوی - ویکی‌پدیا، دانشنامهٔ آزاد
از ویکی‌پدیا، دانشنامهٔ آزاد

در ادامه فهرستی از انتگرال تابع‌های وارون هذلولوی نوشته شده‌است. برای آگاهی بیشتر صفحهٔ فهرست انتگرال‌ها را نگاه کنید.

در تمامی رابطه‌ها فرض می‌شود که a ناصفر و C ثابت انتگرال‌گیری است. همچنین یادآوری می‌شود که برای هریک از انتگرال‌های وارون هذلولوی، که در زیر نوشته شده‌اند، در مقابل، یک رابطه نیز در فهرست انتگرال تابع‌های وارون مثلثاتی وجود دارد.

انتگرال تابع‌های وارون سینوس هیپربولیک

[ویرایش]
∫ arsinh ⁡ ( a x ) d x = x arsinh ⁡ ( a x ) − a 2 x 2 + 1 a + C {\displaystyle \int \operatorname {arsinh} (a\,x)\,dx=x\,\operatorname {arsinh} (a\,x)-{\frac {\sqrt {a^{2}\,x^{2}+1}}{a}}+C} {\displaystyle \int \operatorname {arsinh} (a\,x)\,dx=x\,\operatorname {arsinh} (a\,x)-{\frac {\sqrt {a^{2}\,x^{2}+1}}{a}}+C}
∫ x arsinh ⁡ ( a x ) d x = x 2 arsinh ⁡ ( a x ) 2 + arsinh ⁡ ( a x ) 4 a 2 − x a 2 x 2 + 1 4 a + C {\displaystyle \int x\,\operatorname {arsinh} (a\,x)dx={\frac {x^{2}\,\operatorname {arsinh} (a\,x)}{2}}+{\frac {\operatorname {arsinh} (a\,x)}{4\,a^{2}}}-{\frac {x{\sqrt {a^{2}\,x^{2}+1}}}{4\,a}}+C} {\displaystyle \int x\,\operatorname {arsinh} (a\,x)dx={\frac {x^{2}\,\operatorname {arsinh} (a\,x)}{2}}+{\frac {\operatorname {arsinh} (a\,x)}{4\,a^{2}}}-{\frac {x{\sqrt {a^{2}\,x^{2}+1}}}{4\,a}}+C}
∫ x 2 arsinh ⁡ ( a x ) d x = x 3 arsinh ⁡ ( a x ) 3 − ( a 2 x 2 − 2 ) a 2 x 2 + 1 9 a 3 + C {\displaystyle \int x^{2}\,\operatorname {arsinh} (a\,x)dx={\frac {x^{3}\,\operatorname {arsinh} (a\,x)}{3}}-{\frac {\left(a^{2}\,x^{2}-2\right){\sqrt {a^{2}\,x^{2}+1}}}{9\,a^{3}}}+C} {\displaystyle \int x^{2}\,\operatorname {arsinh} (a\,x)dx={\frac {x^{3}\,\operatorname {arsinh} (a\,x)}{3}}-{\frac {\left(a^{2}\,x^{2}-2\right){\sqrt {a^{2}\,x^{2}+1}}}{9\,a^{3}}}+C}
∫ x m arsinh ⁡ ( a x ) d x = x m + 1 arsinh ⁡ ( a x ) m + 1 − a m + 1 ∫ x m + 1 a 2 x 2 + 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\,\operatorname {arsinh} (a\,x)dx={\frac {x^{m+1}\,\operatorname {arsinh} (a\,x)}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {a^{2}\,x^{2}+1}}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\,\operatorname {arsinh} (a\,x)dx={\frac {x^{m+1}\,\operatorname {arsinh} (a\,x)}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {a^{2}\,x^{2}+1}}}\,dx\quad (m\neq -1)}
∫ arsinh ⁡ ( a x ) 2 d x = 2 x + x arsinh ⁡ ( a x ) 2 − 2 a 2 x 2 + 1 arsinh ⁡ ( a x ) a + C {\displaystyle \int \operatorname {arsinh} (a\,x)^{2}\,dx=2\,x+x\,\operatorname {arsinh} (a\,x)^{2}-{\frac {2\,{\sqrt {a^{2}\,x^{2}+1}}\,\operatorname {arsinh} (a\,x)}{a}}+C} {\displaystyle \int \operatorname {arsinh} (a\,x)^{2}\,dx=2\,x+x\,\operatorname {arsinh} (a\,x)^{2}-{\frac {2\,{\sqrt {a^{2}\,x^{2}+1}}\,\operatorname {arsinh} (a\,x)}{a}}+C}
∫ arsinh ⁡ ( a x ) n d x = x arsinh ⁡ ( a x ) n − n a 2 x 2 + 1 arsinh ⁡ ( a x ) n − 1 a + n ( n − 1 ) ∫ arsinh ⁡ ( a x ) n − 2 d x {\displaystyle \int \operatorname {arsinh} (a\,x)^{n}\,dx=x\,\operatorname {arsinh} (a\,x)^{n}\,-\,{\frac {n\,{\sqrt {a^{2}\,x^{2}+1}}\,\operatorname {arsinh} (a\,x)^{n-1}}{a}}\,+\,n\,(n-1)\int \operatorname {arsinh} (a\,x)^{n-2}\,dx} {\displaystyle \int \operatorname {arsinh} (a\,x)^{n}\,dx=x\,\operatorname {arsinh} (a\,x)^{n}\,-\,{\frac {n\,{\sqrt {a^{2}\,x^{2}+1}}\,\operatorname {arsinh} (a\,x)^{n-1}}{a}}\,+\,n\,(n-1)\int \operatorname {arsinh} (a\,x)^{n-2}\,dx}
∫ arsinh ⁡ ( a x ) n d x = − x arsinh ⁡ ( a x ) n + 2 ( n + 1 ) ( n + 2 ) + a 2 x 2 + 1 arsinh ⁡ ( a x ) n + 1 a ( n + 1 ) + 1 ( n + 1 ) ( n + 2 ) ∫ arsinh ⁡ ( a x ) n + 2 d x ( n ≠ − 1 , − 2 ) {\displaystyle \int \operatorname {arsinh} (a\,x)^{n}\,dx=-{\frac {x\,\operatorname {arsinh} (a\,x)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {a^{2}\,x^{2}+1}}\,\operatorname {arsinh} (a\,x)^{n+1}}{a(n+1)}}\,+\,{\frac {1}{(n+1)\,(n+2)}}\int \operatorname {arsinh} (a\,x)^{n+2}\,dx\quad (n\neq -1,-2)} {\displaystyle \int \operatorname {arsinh} (a\,x)^{n}\,dx=-{\frac {x\,\operatorname {arsinh} (a\,x)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {a^{2}\,x^{2}+1}}\,\operatorname {arsinh} (a\,x)^{n+1}}{a(n+1)}}\,+\,{\frac {1}{(n+1)\,(n+2)}}\int \operatorname {arsinh} (a\,x)^{n+2}\,dx\quad (n\neq -1,-2)}

انتگرال تابع‌های وارون کسینوس هیپربولیک

[ویرایش]
∫ arcosh ⁡ ( a x ) d x = x arcosh ⁡ ( a x ) − a x + 1 a x − 1 a + C {\displaystyle \int \operatorname {arcosh} (a\,x)\,dx=x\,\operatorname {arcosh} (a\,x)-{\frac {{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}}{a}}+C} {\displaystyle \int \operatorname {arcosh} (a\,x)\,dx=x\,\operatorname {arcosh} (a\,x)-{\frac {{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}}{a}}+C}
∫ x arcosh ⁡ ( a x ) d x = x 2 arcosh ⁡ ( a x ) 2 − arcosh ⁡ ( a x ) 4 a 2 − x a x + 1 a x − 1 4 a + C {\displaystyle \int x\,\operatorname {arcosh} (a\,x)dx={\frac {x^{2}\,\operatorname {arcosh} (a\,x)}{2}}-{\frac {\operatorname {arcosh} (a\,x)}{4\,a^{2}}}-{\frac {x\,{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}}{4\,a}}+C} {\displaystyle \int x\,\operatorname {arcosh} (a\,x)dx={\frac {x^{2}\,\operatorname {arcosh} (a\,x)}{2}}-{\frac {\operatorname {arcosh} (a\,x)}{4\,a^{2}}}-{\frac {x\,{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}}{4\,a}}+C}
∫ x 2 arcosh ⁡ ( a x ) d x = x 3 arcosh ⁡ ( a x ) 3 − ( a 2 x 2 + 2 ) a x + 1 a x − 1 9 a 3 + C {\displaystyle \int x^{2}\,\operatorname {arcosh} (a\,x)dx={\frac {x^{3}\,\operatorname {arcosh} (a\,x)}{3}}-{\frac {\left(a^{2}\,x^{2}+2\right){\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}}{9\,a^{3}}}+C} {\displaystyle \int x^{2}\,\operatorname {arcosh} (a\,x)dx={\frac {x^{3}\,\operatorname {arcosh} (a\,x)}{3}}-{\frac {\left(a^{2}\,x^{2}+2\right){\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}}{9\,a^{3}}}+C}
∫ x m arcosh ⁡ ( a x ) d x = x m + 1 arcosh ⁡ ( a x ) m + 1 − a m + 1 ∫ x m + 1 a x + 1 a x − 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\,\operatorname {arcosh} (a\,x)dx={\frac {x^{m+1}\,\operatorname {arcosh} (a\,x)}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\,\operatorname {arcosh} (a\,x)dx={\frac {x^{m+1}\,\operatorname {arcosh} (a\,x)}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}}}\,dx\quad (m\neq -1)}
∫ arcosh ⁡ ( a x ) 2 d x = 2 x + x arcosh ⁡ ( a x ) 2 − 2 a x + 1 a x − 1 arcosh ⁡ ( a x ) a + C {\displaystyle \int \operatorname {arcosh} (a\,x)^{2}\,dx=2\,x+x\,\operatorname {arcosh} (a\,x)^{2}-{\frac {2\,{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}\,\operatorname {arcosh} (a\,x)}{a}}+C} {\displaystyle \int \operatorname {arcosh} (a\,x)^{2}\,dx=2\,x+x\,\operatorname {arcosh} (a\,x)^{2}-{\frac {2\,{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}\,\operatorname {arcosh} (a\,x)}{a}}+C}
∫ arcosh ⁡ ( a x ) n d x = x arcosh ⁡ ( a x ) n − n a x + 1 a x − 1 arcosh ⁡ ( a x ) n − 1 a + n ( n − 1 ) ∫ arcosh ⁡ ( a x ) n − 2 d x {\displaystyle \int \operatorname {arcosh} (a\,x)^{n}\,dx=x\,\operatorname {arcosh} (a\,x)^{n}\,-\,{\frac {n\,{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}\,\operatorname {arcosh} (a\,x)^{n-1}}{a}}\,+\,n\,(n-1)\int \operatorname {arcosh} (a\,x)^{n-2}\,dx} {\displaystyle \int \operatorname {arcosh} (a\,x)^{n}\,dx=x\,\operatorname {arcosh} (a\,x)^{n}\,-\,{\frac {n\,{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}\,\operatorname {arcosh} (a\,x)^{n-1}}{a}}\,+\,n\,(n-1)\int \operatorname {arcosh} (a\,x)^{n-2}\,dx}
∫ arcosh ⁡ ( a x ) n d x = − x arcosh ⁡ ( a x ) n + 2 ( n + 1 ) ( n + 2 ) + a x + 1 a x − 1 arcosh ⁡ ( a x ) n + 1 a ( n + 1 ) + 1 ( n + 1 ) ( n + 2 ) ∫ arcosh ⁡ ( a x ) n + 2 d x ( n ≠ − 1 , − 2 ) {\displaystyle \int \operatorname {arcosh} (a\,x)^{n}\,dx=-{\frac {x\,\operatorname {arcosh} (a\,x)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}\,\operatorname {arcosh} (a\,x)^{n+1}}{a\,(n+1)}}\,+\,{\frac {1}{(n+1)\,(n+2)}}\int \operatorname {arcosh} (a\,x)^{n+2}\,dx\quad (n\neq -1,-2)} {\displaystyle \int \operatorname {arcosh} (a\,x)^{n}\,dx=-{\frac {x\,\operatorname {arcosh} (a\,x)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {a\,x+1}}\,{\sqrt {a\,x-1}}\,\operatorname {arcosh} (a\,x)^{n+1}}{a\,(n+1)}}\,+\,{\frac {1}{(n+1)\,(n+2)}}\int \operatorname {arcosh} (a\,x)^{n+2}\,dx\quad (n\neq -1,-2)}

انتگرال تابع‌های وارون تانژانت هیپربولیک

[ویرایش]
∫ artanh ⁡ ( a x ) d x = x artanh ⁡ ( a x ) + ln ⁡ ( a 2 x 2 − 1 ) 2 a + C {\displaystyle \int \operatorname {artanh} (a\,x)\,dx=x\,\operatorname {artanh} (a\,x)+{\frac {\ln \left(a^{2}\,x^{2}-1\right)}{2\,a}}+C} {\displaystyle \int \operatorname {artanh} (a\,x)\,dx=x\,\operatorname {artanh} (a\,x)+{\frac {\ln \left(a^{2}\,x^{2}-1\right)}{2\,a}}+C}
∫ x artanh ⁡ ( a x ) d x = x 2 artanh ⁡ ( a x ) 2 − artanh ⁡ ( a x ) 2 a 2 + x 2 a + C {\displaystyle \int x\,\operatorname {artanh} (a\,x)dx={\frac {x^{2}\,\operatorname {artanh} (a\,x)}{2}}-{\frac {\operatorname {artanh} (a\,x)}{2\,a^{2}}}+{\frac {x}{2\,a}}+C} {\displaystyle \int x\,\operatorname {artanh} (a\,x)dx={\frac {x^{2}\,\operatorname {artanh} (a\,x)}{2}}-{\frac {\operatorname {artanh} (a\,x)}{2\,a^{2}}}+{\frac {x}{2\,a}}+C}
∫ x 2 artanh ⁡ ( a x ) d x = x 3 artanh ⁡ ( a x ) 3 + ln ⁡ ( a 2 x 2 − 1 ) 6 a 3 + x 2 6 a + C {\displaystyle \int x^{2}\,\operatorname {artanh} (a\,x)dx={\frac {x^{3}\,\operatorname {artanh} (a\,x)}{3}}+{\frac {\ln \left(a^{2}\,x^{2}-1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C} {\displaystyle \int x^{2}\,\operatorname {artanh} (a\,x)dx={\frac {x^{3}\,\operatorname {artanh} (a\,x)}{3}}+{\frac {\ln \left(a^{2}\,x^{2}-1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C}
∫ x m artanh ⁡ ( a x ) d x = x m + 1 artanh ⁡ ( a x ) m + 1 + a m + 1 ∫ x m + 1 a 2 x 2 − 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\,\operatorname {artanh} (a\,x)dx={\frac {x^{m+1}\operatorname {artanh} (a\,x)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}-1}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\,\operatorname {artanh} (a\,x)dx={\frac {x^{m+1}\operatorname {artanh} (a\,x)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}-1}}\,dx\quad (m\neq -1)}

انتگرال تابع‌های وارون کتانژانت هیپربولیک

[ویرایش]
∫ arcoth ⁡ ( a x ) d x = x arcoth ⁡ ( a x ) + ln ⁡ ( a 2 x 2 − 1 ) 2 a + C {\displaystyle \int \operatorname {arcoth} (a\,x)\,dx=x\,\operatorname {arcoth} (a\,x)+{\frac {\ln \left(a^{2}\,x^{2}-1\right)}{2\,a}}+C} {\displaystyle \int \operatorname {arcoth} (a\,x)\,dx=x\,\operatorname {arcoth} (a\,x)+{\frac {\ln \left(a^{2}\,x^{2}-1\right)}{2\,a}}+C}
∫ x arcoth ⁡ ( a x ) d x = x 2 arcoth ⁡ ( a x ) 2 − arcoth ⁡ ( a x ) 2 a 2 + x 2 a + C {\displaystyle \int x\,\operatorname {arcoth} (a\,x)dx={\frac {x^{2}\,\operatorname {arcoth} (a\,x)}{2}}-{\frac {\operatorname {arcoth} (a\,x)}{2\,a^{2}}}+{\frac {x}{2\,a}}+C} {\displaystyle \int x\,\operatorname {arcoth} (a\,x)dx={\frac {x^{2}\,\operatorname {arcoth} (a\,x)}{2}}-{\frac {\operatorname {arcoth} (a\,x)}{2\,a^{2}}}+{\frac {x}{2\,a}}+C}
∫ x 2 arcoth ⁡ ( a x ) d x = x 3 arcoth ⁡ ( a x ) 3 + ln ⁡ ( a 2 x 2 − 1 ) 6 a 3 + x 2 6 a + C {\displaystyle \int x^{2}\,\operatorname {arcoth} (a\,x)dx={\frac {x^{3}\,\operatorname {arcoth} (a\,x)}{3}}+{\frac {\ln \left(a^{2}\,x^{2}-1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C} {\displaystyle \int x^{2}\,\operatorname {arcoth} (a\,x)dx={\frac {x^{3}\,\operatorname {arcoth} (a\,x)}{3}}+{\frac {\ln \left(a^{2}\,x^{2}-1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C}
∫ x m arcoth ⁡ ( a x ) d x = x m + 1 arcoth ⁡ ( a x ) m + 1 + a m + 1 ∫ x m + 1 a 2 x 2 − 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\,\operatorname {arcoth} (a\,x)dx={\frac {x^{m+1}\operatorname {arcoth} (a\,x)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}-1}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\,\operatorname {arcoth} (a\,x)dx={\frac {x^{m+1}\operatorname {arcoth} (a\,x)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}-1}}\,dx\quad (m\neq -1)}

انتگرال تابع‌های وارون سکانت هیپربولیک

[ویرایش]
∫ arsech ⁡ ( a x ) d x = x arsech ⁡ ( a x ) − 2 a arctan ⁡ 1 − a x 1 + a x + C {\displaystyle \int \operatorname {arsech} (a\,x)\,dx=x\,\operatorname {arsech} (a\,x)-{\frac {2}{a}}\,\operatorname {arctan} {\sqrt {\frac {1-a\,x}{1+a\,x}}}+C} {\displaystyle \int \operatorname {arsech} (a\,x)\,dx=x\,\operatorname {arsech} (a\,x)-{\frac {2}{a}}\,\operatorname {arctan} {\sqrt {\frac {1-a\,x}{1+a\,x}}}+C}
∫ x arsech ⁡ ( a x ) d x = x 2 arsech ⁡ ( a x ) 2 − ( 1 + a x ) 2 a 2 1 − a x 1 + a x + C {\displaystyle \int x\,\operatorname {arsech} (a\,x)dx={\frac {x^{2}\,\operatorname {arsech} (a\,x)}{2}}-{\frac {(1+a\,x)}{2\,a^{2}}}{\sqrt {\frac {1-a\,x}{1+a\,x}}}+C} {\displaystyle \int x\,\operatorname {arsech} (a\,x)dx={\frac {x^{2}\,\operatorname {arsech} (a\,x)}{2}}-{\frac {(1+a\,x)}{2\,a^{2}}}{\sqrt {\frac {1-a\,x}{1+a\,x}}}+C}
∫ x 2 arsech ⁡ ( a x ) d x = x 3 arsech ⁡ ( a x ) 3 − 1 3 a 3 arctan ⁡ 1 − a x 1 + a x − x ( 1 + a x ) 6 a 2 1 − a x 1 + a x + C {\displaystyle \int x^{2}\,\operatorname {arsech} (a\,x)dx={\frac {x^{3}\,\operatorname {arsech} (a\,x)}{3}}\,-\,{\frac {1}{3\,a^{3}}}\,\operatorname {arctan} {\sqrt {\frac {1-a\,x}{1+a\,x}}}\,-\,{\frac {x(1+a\,x)}{6\,a^{2}}}{\sqrt {\frac {1-a\,x}{1+a\,x}}}\,+\,C} {\displaystyle \int x^{2}\,\operatorname {arsech} (a\,x)dx={\frac {x^{3}\,\operatorname {arsech} (a\,x)}{3}}\,-\,{\frac {1}{3\,a^{3}}}\,\operatorname {arctan} {\sqrt {\frac {1-a\,x}{1+a\,x}}}\,-\,{\frac {x(1+a\,x)}{6\,a^{2}}}{\sqrt {\frac {1-a\,x}{1+a\,x}}}\,+\,C}
∫ x m arsech ⁡ ( a x ) d x = x m + 1 arsech ⁡ ( a x ) m + 1 + 1 m + 1 ∫ x m ( 1 + a x ) 1 − a x 1 + a x d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\,\operatorname {arsech} (a\,x)dx={\frac {x^{m+1}\,\operatorname {arsech} (a\,x)}{m+1}}\,+\,{\frac {1}{m+1}}\int {\frac {x^{m}}{(1+a\,x){\sqrt {\frac {1-a\,x}{1+a\,x}}}}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\,\operatorname {arsech} (a\,x)dx={\frac {x^{m+1}\,\operatorname {arsech} (a\,x)}{m+1}}\,+\,{\frac {1}{m+1}}\int {\frac {x^{m}}{(1+a\,x){\sqrt {\frac {1-a\,x}{1+a\,x}}}}}\,dx\quad (m\neq -1)}

انتگرال تابع‌های وارون کسکانت هیپربولیک

[ویرایش]
∫ arcsch ⁡ ( a x ) d x = x arcsch ⁡ ( a x ) + 1 a artanh ⁡ 1 a 2 x 2 + 1 + C {\displaystyle \int \operatorname {arcsch} (a\,x)\,dx=x\,\operatorname {arcsch} (a\,x)+{\frac {1}{a}}\,\operatorname {artanh} {\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}+C} {\displaystyle \int \operatorname {arcsch} (a\,x)\,dx=x\,\operatorname {arcsch} (a\,x)+{\frac {1}{a}}\,\operatorname {artanh} {\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}+C}
∫ x arcsch ⁡ ( a x ) d x = x 2 arcsch ⁡ ( a x ) 2 + x 2 a 1 a 2 x 2 + 1 + C {\displaystyle \int x\,\operatorname {arcsch} (a\,x)dx={\frac {x^{2}\,\operatorname {arcsch} (a\,x)}{2}}+{\frac {x}{2\,a}}{\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}+C} {\displaystyle \int x\,\operatorname {arcsch} (a\,x)dx={\frac {x^{2}\,\operatorname {arcsch} (a\,x)}{2}}+{\frac {x}{2\,a}}{\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}+C}
∫ x 2 arcsch ⁡ ( a x ) d x = x 3 arcsch ⁡ ( a x ) 3 − 1 6 a 3 artanh ⁡ 1 a 2 x 2 + 1 + x 2 6 a 1 a 2 x 2 + 1 + C {\displaystyle \int x^{2}\,\operatorname {arcsch} (a\,x)dx={\frac {x^{3}\,\operatorname {arcsch} (a\,x)}{3}}\,-\,{\frac {1}{6\,a^{3}}}\,\operatorname {artanh} {\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}\,+\,{\frac {x^{2}}{6\,a}}{\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}\,+\,C} {\displaystyle \int x^{2}\,\operatorname {arcsch} (a\,x)dx={\frac {x^{3}\,\operatorname {arcsch} (a\,x)}{3}}\,-\,{\frac {1}{6\,a^{3}}}\,\operatorname {artanh} {\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}\,+\,{\frac {x^{2}}{6\,a}}{\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}\,+\,C}
∫ x m arcsch ⁡ ( a x ) d x = x m + 1 arcsch ⁡ ( a x ) m + 1 + 1 a ( m + 1 ) ∫ x m − 1 1 a 2 x 2 + 1 d x ( m ≠ − 1 ) {\displaystyle \int x^{m}\,\operatorname {arcsch} (a\,x)dx={\frac {x^{m+1}\operatorname {arcsch} (a\,x)}{m+1}}\,+\,{\frac {1}{a(m+1)}}\int {\frac {x^{m-1}}{\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}}\,dx\quad (m\neq -1)} {\displaystyle \int x^{m}\,\operatorname {arcsch} (a\,x)dx={\frac {x^{m+1}\operatorname {arcsch} (a\,x)}{m+1}}\,+\,{\frac {1}{a(m+1)}}\int {\frac {x^{m-1}}{\sqrt {{\frac {1}{a^{2}\,x^{2}}}+1}}}\,dx\quad (m\neq -1)}

منابع

[ویرایش]

مشارکت‌کنندگان ویکی‌پدیا. «List of integrals of inverse hyperbolic functions». در دانشنامهٔ ویکی‌پدیای انگلیسی، بازبینی‌شده در ۳۱ اوت ۲۰۱۱.

  • ن
  • ب
  • و
فهرست انتگرال‌ها
توابع گویا • توابع گنگ • توابع مثلثاتی • توابع وارون مثلثاتی • توابع هیپربولیک • تابع‌های وارون هیپربولیک • توابع نمایی • توابع لگاریتمی • تابع‌های گوسی
  • ن
  • ب
  • و
حسابان
پیش حسابان
  • بسط دوجمله‌ای
  • تابع مقعر
  • تابع پیوسته
  • فاکتوریل
  • تفاضل محدود
  • متغیر آزاد و متغیر پابند
  • نمودار تابع
  • Linear function
  • رادیان
  • قضیه رول
  • سکانت
  • شیب
  • مماس
حد (ریاضی)
  • شکل نامعلوم
  • حد تابع
    • حد یک-طرفه
  • حد دنباله
  • مرتبه تخمین
  • حد تابع
حساب دیفرانسیل
  • مشتق
  • دیفرانسیل (ریاضیات)
  • معادله دیفرانسیل
  • عملگر دیفرانسیلی
  • قضیه مقدار میانگین
  • نمادگذاری‌های مشتق
    • Leibniz's notation
    • نمادگذاری‌های مشتق
  • قواعد دیفرانسیل گیری
    • linearity
    • Power
    • قواعد دیفرانسیل گیری
    • قاعده زنجیری
    • قاعده هوپیتال
    • قاعده ضرب
      • General Leibniz's rule
    • قاعده خارج قسمت
  • Other techniques
    • تابع ضمنی
    • Inverse functions and differentiation
    • Logarithmic derivative
    • Related rates
  • نقاط مانا
    • First derivative test
    • Second derivative test
    • Extreme value theorem
    • بیشینه و کمینه
  • کاربرد های دیگر
    • روش نیوتن
    • قضیه تیلور
انتگرال
  • پاد مشتق
  • طول قوس
  • انتگرال
  • Constant of integration
  • Differentiation under the integral sign
  • قضیه اساسی حسابان
    • Differentiating under the integral sign
  • انتگرال‌گیری جزء به جزء
  • Integration by substitution
    • جانشینی مثلثاتی
    • تغییر متغیر اویلر
    • Weierstrass
  • Partial fractions in integration
    • Quadratic integral
  • قانون ذوزنقه
  • حجم‌ها
    • Washer method
    • روش پوسته
حساب برداری
  • مشتق‌ها
    • تاو (ریاضی)
    • مشتق جهت‌دار
    • دیورژانس
    • گرادیان
    • عملگر لاپلاس
  • قضایای پایه‌ای
    • قضیه گرادیان
    • قضیه گرین
    • Stokes'
    • قضیه دیورژانس
حساب چندمتغیره
  • قضیه دیورژانس
  • Geometric
  • ماتریس هسین
  • ماتریس ژاکوبی
  • ضرایب لاگرانژ
  • انتگرال خطی
  • حساب ماتریس‌ها
  • انتگرال چندگانه
  • مشتق جزئی
  • انتگرال سطحی
  • انتگرال حجمی
  • مباحث پیشرفته
    • Differential forms
    • Exterior derivative
    • قضیه استوکس
    • حساب تنسوری
دنباله و سری
  • Arithmetico–geometric sequence
  • انواع سری
    • Alternating
    • سری دو جمله‌ای
    • سری فوریه
    • سری هندسی
    • سری هارمونیک
    • سری (ریاضیات)
    • سری توانی
      • بسط تیلور
      • بسط تیلور
    • Telescoping
  • آزمون‌های همگرایی
    • Abel's
    • Alternating series
    • Cauchy condensation
    • Direct comparison
    • Dirichlet's
    • Integral
    • Limit comparison
    • آزمون نسبت
    • Root
    • آزمون جمله
توابع خاص
و اعداد
  • عدد برنولی
  • E (عدد)
  • تابع نمایی
  • لگاریتم طبیعی
  • تقریب استرلینگ
تاریخچه حسابان
  • Adequality
  • بروک تیلور
  • کولین مک‌لورین
  • Generality of algebra
  • گوتفرید لایبنیتس
  • بی‌نهایت کوچک
  • حسابان
  • آیزاک نیوتن
  • Fluxion
  • Law of Continuity
  • لئونارد اویلر
  • Method of Fluxions
  • The Method of Mechanical Theorems
لیست‌ها
  • قواعد دیفرانسیل گیری
  • فهرست انتگرال تابع‌های نمایی
  • فهرست انتگرال‌های تابع‌های هیپربولیک
  • فهرست انتگرال تابع‌های وارون هذلولوی
  • فهرست انتگرال توابع وارون مثلثاتی
  • فهرست انتگرال تابع‌های گنگ
  • فهرست انتگرال‌های توابع لگاریتمی
  • فهرست انتگرال توابع گویا
  • فهرست انتگرال توابع مثلثاتی
    • Secant
    • Secant cubed
  • فهرست حدها
  • فهرست‌های انتگرال‌ها
موضوعات متفرقه
  • هندسهٔ دیفرانسیل
    • انحنا
    • of curves
    • of surfaces
  • Euler–Maclaurin formula
  • Gabriel's Horn
  • برهان بزرگتر بودن ۲۲/۷ از عدد پی
  • Regiomontanus' angle maximization problem
  • Steinmetz solid
برگرفته از «https://fa.teknopedia.teknokrat.ac.id/w/index.php?title=فهرست_انتگرال_تابع‌های_وارون_هذلولوی&oldid=31459751»
رده‌ها:
  • انتگرال‌ها
  • فهرست‌های ریاضی
ردهٔ پنهان:
  • مقاله‌های دارای الگوی یادکرد-ویکی

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • країнська
  • Tiếng Việt
  • Winaray
  • 文
  • Русский
Sunting pranala
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id