پل دو کاستلژو | |
---|---|
زادهٔ | ۱۹ نوامبر ۱۹۳۰ |
درگذشت | ۲۴ مارس ۲۰۲۲ (۹۱ سال) |
ملیت | فرانسوی |
شناختهشده برای | منحنیهای دو کاستلژو |
پیشینه علمی | |
شاخه(ها) | فیزیک، ریاضی |
پل دو کاستلژو (زاده ۱۹ نوامبر ۱۹۳۰ در بزانسون، فرانسه) فیزیکدان و ریاضیدان فرانسوی است. در سال ۱۹۵۹، زمانی که در سیتروئن کار میکرد، الگوریتمی برای ارزیابی محاسبات روی یک خانواده خاص از منحنیها بوجود آورد که بعداً توسط مهندس پیر بزیه رسمیت یافت و به منحنیهایی معروف شد که بهطور گسترده به منحنیهای بزیه معروف شدند. الگوریتم دو کاستلژو با برخی تغییرات جزئی بهطور گستردهای مورد استفاده قرار میگیرد، زیرا قویترین و از نظر عددی پایدارترین روش برای ارزیابی چند جمله ایها است. روشهای دیگر، مانند روش هورنر و تفاضل رو به جلو، برای محاسبه نقاط منفرد سریعتر هستند اما از استحکام کمتری برخوردار هستند. هنوز هم الگوریتم دو کاستلژو سریعترین روش تقسیم منحنی دو کاستلژو یا منحنی بزیه به دو بخش منحنی در یک مکان پارامتری دلخواه است.
منحنیهای دو کاستلژو
جوایز
پل دو کاستلژو جایزه بزیه ۲۰۱۲ را از انجمن مدلینگ جامد (SMA) دریافت کرد. اعلامیه SMA به برجسته کردن الگوریتم همنام دو کاستلژو میپردازد:
- مشارکتهای پل دو کاستلژو کمتر از آنچه که باید باشد، شناخته شدهاست، زیرا او قادر به انتشار آنها تا زمانی که ایدههای مشابه بهطور مستقل توسط دیگران ابداع نشده بود، نبود، گاهی اوقات به شکلی متفاوت اما اکنون بهطور قابل تشخیصی مرتبط هستند. از آنجایی که او اجازه انتشار آثار اولیه خود را نداشت، اکنون چندجملهایهای مبتنی بر 'برنشتاین' را «چندجملهایهای بزیه» مینامیم، اگرچه خود بزیه از نقاط کنترلی استفاده نکرد، به غیر از اولین بردارهای تفاوت آنها به عنوان ضرایب استفاده کرد. همچین، به پیروی از لایل رامشاو که به نوبهٔ خود اعتبار «رویکرد قطبی» زیربنایی در نظریه ریاضی اسپلاینها را به دی کاستلژائو نسبت داد، ما نیز چندجملهایهای چند خطی را «شکوفنده» مینامیم. ما الگوریتم ارزیابی پایدار فرم برنشتاین-بزیه را برای چندجملهایها «الگوریتم دی کاستلژائو» مینامیم، اگرچه این نتیجه کلیتر کارل دبور است که آن را برای خطوط B بکار میبرد که اکنون بهطور گسترده در سیستمهای CAD/CAM استفاده میشود.[۱]
بعلاوه، SMA از پیر بزیه در مورد مشارکتهای دو کاستلژو نقل قول میکند:
- شکی نیست که سیتروئن اولین شرکتی در فرانسه بود که در اوایل سال ۱۹۵۸ به CAD توجه کرد. پل دو کاستلژو، یک ریاضیدان بسیار با استعداد، سیستمی را بر اساس استفاده از چند جمله ای برنشتاین ابداع کرد. سیستم ابداع شده توسط دو کاستلژو گزایش به تبدیل اَشکال موجود به وصلههایی که بر اساس دادههای عددی تعریف شدهاند دارد . . . . به دلیل سیاست سیتروئن، نتایج به دست آمده توسط دی کاستلژائو تا سال ۱۹۷۴ منتشر نشد و این ریاضیدان عالی از بخشی از شهرت شایستهای که اکتشافات و اختراعاتش باید برای او به دست میآورد، محروم شد.[۲]
منابع
- ↑ "SMA 2012 Bézier Award Announcement" بایگانیشده در ۲۰۱۴-۰۳-۲۵ توسط Wayback Machine
- ↑ Pierre Bézier, The first years of CAD/CAM and the UNISURF CAD System," pp 13-26 in Fundamental Developments of Computer- Aided Geometric Modeling, ed L. Piegl, 1993
- (به فرانسوی) Paul De Casteljau, Outillage Méthodes Calcul, INPI Enveloppe Soleau No. 40.040, 1959, Citroen Internal Document P2108
- (به فرانسوی) Paul De Casteljau, Courbes et Surfaces à Pôles, 1963, Citroen Internal Document P_4147
- (به فرانسوی) Mathématiques et CAO. Vol. 2 : Formes à pôles, Hermes, 1986
- Shape Mathematics and CAD, KoganPage, London 1986
- (به فرانسوی) Les quaternions: Hermès, 1987, ISBN 978-2866011031
- (به فرانسوی) Le Lissage: Hermes, 1990
- POLynomials, POLar Forms, and InterPOLation, September 1992, In Lychee / Schumaker: Mathematical methods in computer aided geometric design II, Addison-Wesley 1992, pp.57-68
- Splines Focales, In Laurent / Le Méhauté / Schumaker: Curves and Surfaces in Geometric Design, AK Peters 1994, pp.91-103
- Andreas Müller, "Neuere Gedanken des Monsieur Paul de Faget de Casteljau", 1995
- De Faget De Casteljau, Paul (August 1999). "De Casteljau's autobiography: My time at Citroën". Computer Aided Geometric Design. 16 (7): 583–586. doi:10.1016/S0167-8396(99)00024-2.
- Boehm, Wolfgang; Mueller, Andreas (August 1999). "On de Casteljau's algorithm". Computer Aided Geometric Design. 16 (7): 587–605. doi:10.1016/S0167-8396(99)00023-0.